If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-10x-5=0
a = 6; b = -10; c = -5;
Δ = b2-4ac
Δ = -102-4·6·(-5)
Δ = 220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{220}=\sqrt{4*55}=\sqrt{4}*\sqrt{55}=2\sqrt{55}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{55}}{2*6}=\frac{10-2\sqrt{55}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{55}}{2*6}=\frac{10+2\sqrt{55}}{12} $
| 14x+13=8x+13 | | F(n)=10-2n | | 6x=7=2x-6 | | 12m+-9=4m+15 | | 7p+3=-3+17 | | 3.35+6s=T | | -5x+5x=8+2x | | x+10=97 | | -12x+8+5x=-36 | | --7+m/9=-6 | | 6.8(x.1)=-0.2x+28.2 | | (7x-2)(11x-34)=180 | | 4x^-20x+25=0 | | 4x+2x+50=90 | | 11x+10=3x-54 | | .75(x-13)=-2(9+x) | | 2^2x-3=52 | | -12(x=12)=-9(1+7x) | | 9+7(3-2x)=30-14x | | 5x-0.65=10x-0.45 | | 3x+2-2-(1x+1-2)=2x-1x-2+3 | | 5.1+2025=26.01+45x | | -x+5-x-2=13 | | 5-0.65x=10-0.45x | | 5(x-3)-7=-3(-7x+8)-2x | | 3n^2+9n-2n-6=2n^2+8 | | 4{x+8}=3{6-x} | | 12-x+65=11x+5 | | 12x+13=4x+189 | | 12-(2-4y)=7+y-(5-4y) | | n+3÷n+4=2n÷3n-2 | | 7x-9.6=16 |